PCM音频采样数据处理
2017-07-28
说明
本文分别介绍如下几个PCM音频采样数据处理函数:
- 分离PCM16LE双声道音频采样数据的左声道和右声道
- 将PCM16LE双声道音频采样数据中左声道的音量降一半
- 将PCM16LE双声道音频采样数据的声音速度提高一倍
- 将PCM16LE双声道音频采样数据转换为PCM8音频采样数据
- 从PCM16LE单声道音频采样数据中截取一部分数据
- 将PCM16LE双声道音频采样数据转换为WAVE格式音频数据
具体函数
分离PCM16LE双声道音频采样数据的左声道和右声道
本程序中的函数可以将PCM16LE双声道数据中左声道和右声道的数据分离成两个文件。函数的代码如下所示。
/**
* Split Left and Right channel of 16LE PCM file.
* @param url Location of PCM file.
*
*/
int simplest_pcm16le_split(char *url){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("/Users/qizhang/Desktop/Test02/Test02/output_l.pcm","wb+");
FILE *fp2=fopen("/Users/qizhang/Desktop/Test02/Test02/output_r.pcm","wb+");
unsigned char *sample=(unsigned char *)malloc(4);
while(!feof(fp)){
fread(sample,1,4,fp);
//L
fwrite(sample,1,2,fp1);
//R
fwrite(sample+2,1,2,fp2);
}
// free(sample);
fclose(fp);
fclose(fp1);
fclose(fp2);
return 0;
}
从代码可以看出,PCM16LE双声道数据中左声道和右声道的采样值是间隔存储的。每个采样值占用2Byte空间。代码运行后,会把NocturneNo2inEflat_44.1k_s16le.pcm的PCM16LE格式的数据分离为两个单声道数据:
- output_l.pcm:左声道数据。
- output_r.pcm:右声道数据。
注:本文中声音样值的采样频率一律是44100Hz,采样格式一律为16LE。“16”代表采样位数是16bit。由于1Byte=8bit,所以一个声道的一个采样值占用2Byte。“LE”代表Little Endian,代表2 Byte采样值的存储方式为高位存在高地址中。
下图为输入的双声道PCM数据的波形图。上面的波形图是左声道的图形,下面的波形图是右声道的波形。图中的横坐标是时间,总长度为22秒;纵坐标是取样值,取值范围从-32768到32767。
下图为分离后左声道数据output_l.pcm的音频波形图
下图为分离后右声道数据output_r.pcm的音频波形图
将PCM16LE双声道音频采样数据中左声道的音量降一半
本程序中的函数可以将PCM16LE双声道数据中左声道的音量降低一半。函数的代码如下所示。
/**
* Halve volume of Left channel of 16LE PCM file
* @param url Location of PCM file.
*/
int simplest_pcm16le_halfvolumeleft(char *url){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_halfleft.pcm","wb+");
int cnt=0;
unsigned char *sample=(unsigned char *)malloc(4);
while(!feof(fp)){
short *samplenum=NULL;
fread(sample,1,4,fp);
samplenum=(short *)sample;
*samplenum=*samplenum/2;
//L
fwrite(sample,1,2,fp1);
//R
fwrite(sample+2,1,2,fp1);
cnt++;
}
printf("Sample Cnt:%d\n",cnt);
free(sample);
fclose(fp);
fclose(fp1);
return 0;
}
从源代码可以看出,本程序在读出左声道的2 Byte的取样值之后,将其当成了C语言中的一个short类型的变量。将该数值除以2之后写回到了PCM文件中。下图为输入PCM双声道音频采样数据的波形图。
下图为输出的左声道经过处理后的波形图。可以看出左声道的波形幅度降低了一半
将PCM16LE双声道音频采样数据的声音速度提高一倍
本程序中的函数可以通过抽象的方式将PCM16LE双声道数据的速度提高一倍。函数的代码如下所示。
/**
* Re-sample to double the speed of 16LE PCM file
* @param url Location of PCM file.
*/
int simplest_pcm16le_doublespeed(char *url){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_doublespeed.pcm","wb+");
int cnt=0;
unsigned char *sample=(unsigned char *)malloc(4);
while(!feof(fp)){
fread(sample,1,4,fp);
if(cnt%2!=0){
//L
fwrite(sample,1,2,fp1);
//R
fwrite(sample+2,1,2,fp1);
}
cnt++;
}
printf("Sample Cnt:%d\n",cnt);
free(sample);
fclose(fp);
fclose(fp1);
return 0;
}
从源代码可以看出,本程序只采样了每个声道奇数点的样值。处理完成后,原本22秒左右的音频变成了11秒左右。音频的播放速度提高了2倍,音频的音调也变高了很多。下图为输入PCM双声道音频采样数据的波形图。
下图为输出的PCM双声道音频采样数据的波形图。通过时间轴可以看出音频变短了很多。
将PCM16LE双声道音频采样数据转换为PCM8音频采样数据
本程序中的函数可以通过计算的方式将PCM16LE双声道数据16bit的采样位数转换为8bit。函数的代码如下所示。
/**
* Convert PCM-16 data to PCM-8 data.
* @param url Location of PCM file.
*/
int simplest_pcm16le_to_pcm8(char *url){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_8.pcm","wb+");
int cnt=0;
unsigned char *sample=(unsigned char *)malloc(4);
while(!feof(fp)){
short *samplenum16=NULL;
char samplenum8=0;
unsigned char samplenum8_u=0;
fread(sample,1,4,fp);
//(-32768-32767)
samplenum16=(short *)sample;
samplenum8=(*samplenum16)>>8;
//(0-255)
samplenum8_u=samplenum8+128;
//L
fwrite(&samplenum8_u,1,1,fp1);
samplenum16=(short *)(sample+2);
samplenum8=(*samplenum16)>>8;
samplenum8_u=samplenum8+128;
//R
fwrite(&samplenum8_u,1,1,fp1);
cnt++;
}
printf("Sample Cnt:%d\n",cnt);
free(sample);
fclose(fp);
fclose(fp1);
return 0;
}
PCM16LE格式的采样数据的取值范围是-32768到32767,而PCM8格式的采样数据的取值范围是0到255。所以PCM16LE转换到PCM8需要经过两个步骤:第一步是将-32768到32767的16bit有符号数值转换为-128到127的8bit有符号数值,第二步是将-128到127的8bit有符号数值转换为0到255的8bit无符号数值。在本程序中,16bit采样数据是通过short类型变量存储的,而8bit采样数据是通过unsigned char类型存储的。下图为输入的16bit的PCM双声道音频采样数据的波形图。
下图为输出的8bit的PCM双声道音频采样数据的波形图。注意观察图中纵坐标的取值范围已经变为0至255。如果仔细聆听声音的话,会发现8bit PCM的音质明显不如16 bit PCM的音质。
将从PCM16LE单声道音频采样数据中截取一部分数据
本程序中的函数可以从PCM16LE单声道数据中截取一段数据,并输出截取数据的样值。函数的代码如下所示。
/**
* Cut a 16LE PCM single channel file.
* @param url Location of PCM file.
* @param start_num start point
* @param dur_num how much point to cut
*/
int simplest_pcm16le_cut_singlechannel(char *url,int start_num,int dur_num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_cut.pcm","wb+");
FILE *fp_stat=fopen("output_cut.txt","wb+");
unsigned char *sample=(unsigned char *)malloc(2);
int cnt=0;
while(!feof(fp)){
fread(sample,1,2,fp);
if(cnt>start_num&&cnt<=(start_num+dur_num)){
fwrite(sample,1,2,fp1);
short samplenum=sample[1];
samplenum=samplenum*256;
samplenum=samplenum+sample[0];
fprintf(fp_stat,"%6d,",samplenum);
if(cnt%10==0)
fprintf(fp_stat,"\n",samplenum);
}
cnt++;
}
free(sample);
fclose(fp);
fclose(fp1);
fclose(fp_stat);
return 0;
}
本程序可以从PCM数据中选取一段采样值保存下来,并且输出这些采样值的数值。上述代码运行后,会把单声道PCM16LE格式的“drum.pcm”中从2360点开始的120点的数据保存成output_cut.pcm文件。下图为“drum.pcm”的波形图,该音频采样频率为44100KHz,长度为0.5秒,一共包含约22050个采样点。
下图为截取出来的output_cut.pcm文件中的数据。
将PCM16LE双声道音频采样数据转换为WAVE格式音频数据
WAVE格式音频(扩展名为“.wav”)是Windows系统中最常见的一种音频。该格式的实质就是在PCM文件的前面加了一个文件头。本程序的函数就可以通过在PCM文件前面加一个WAVE文件头从而封装为WAVE格式音频。函数的代码如下所示。
/**
* Convert PCM16LE raw data to WAVE format
* @param pcmpath Input PCM file.
* @param channels Channel number of PCM file.
* @param sample_rate Sample rate of PCM file.
* @param wavepath Output WAVE file.
*/
int simplest_pcm16le_to_wave(const char *pcmpath,int channels,int sample_rate,const char *wavepath)
{
typedef struct WAVE_HEADER{
char fccID[4];
unsigned long dwSize;
char fccType[4];
}WAVE_HEADER;
typedef struct WAVE_FMT{
char fccID[4];
unsigned long dwSize;
unsigned short wFormatTag;
unsigned short wChannels;
unsigned long dwSamplesPerSec;
unsigned long dwAvgBytesPerSec;
unsigned short wBlockAlign;
unsigned short uiBitsPerSample;
}WAVE_FMT;
typedef struct WAVE_DATA{
char fccID[4];
unsigned long dwSize;
}WAVE_DATA;
if(channels==0||sample_rate==0){
channels = 2;
sample_rate = 44100;
}
int bits = 16;
WAVE_HEADER pcmHEADER;
WAVE_FMT pcmFMT;
WAVE_DATA pcmDATA;
unsigned short m_pcmData;
FILE *fp,*fpout;
fp=fopen(pcmpath, "rb");
if(fp == NULL) {
printf("open pcm file error\n");
return -1;
}
fpout=fopen(wavepath, "wb+");
if(fpout == NULL) {
printf("create wav file error\n");
return -1;
}
//WAVE_HEADER
memcpy(pcmHEADER.fccID,"RIFF",strlen("RIFF"));
memcpy(pcmHEADER.fccType,"WAVE",strlen("WAVE"));
fseek(fpout,sizeof(WAVE_HEADER),1);
//WAVE_FMT
pcmFMT.dwSamplesPerSec=sample_rate;
pcmFMT.dwAvgBytesPerSec=pcmFMT.dwSamplesPerSec*sizeof(m_pcmData);
pcmFMT.uiBitsPerSample=bits;
memcpy(pcmFMT.fccID,"fmt ",strlen("fmt "));
pcmFMT.dwSize=16;
pcmFMT.wBlockAlign=2;
pcmFMT.wChannels=channels;
pcmFMT.wFormatTag=1;
fwrite(&pcmFMT,sizeof(WAVE_FMT),1,fpout);
//WAVE_DATA;
memcpy(pcmDATA.fccID,"data",strlen("data"));
pcmDATA.dwSize=0;
fseek(fpout,sizeof(WAVE_DATA),SEEK_CUR);
fread(&m_pcmData,sizeof(unsigned short),1,fp);
while(!feof(fp)){
pcmDATA.dwSize+=2;
fwrite(&m_pcmData,sizeof(unsigned short),1,fpout);
fread(&m_pcmData,sizeof(unsigned short),1,fp);
}
pcmHEADER.dwSize=44+pcmDATA.dwSize;
rewind(fpout);
fwrite(&pcmHEADER,sizeof(WAVE_HEADER),1,fpout);
fseek(fpout,sizeof(WAVE_FMT),SEEK_CUR);
fwrite(&pcmDATA,sizeof(WAVE_DATA),1,fpout);
fclose(fp);
fclose(fpout);
return 0;
}
WAVE文件是一种RIFF格式的文件。其基本块名称是“WAVE”,其中包含了两个子块“fmt”和“data”。从编程的角度简单说来就是由WAVE_HEADER、WAVE_FMT、WAVE_DATA、采样数据共4个部分组成。它的结构如下所示。
WAVE_HEADER |
---|
WAVE_FMT |
WAVE_DATA |
PCM数据 |
其中前3部分的结构如下所示。在写入WAVE文件头的时候给其中的每个字段赋上合适的值就可以了。但是有一点需要注意:WAVE_HEADER和WAVE_DATA中包含了一个文件长度信息的dwSize字段,该字段的值必须在写入完音频采样数据之后才能获得。因此这两个结构体最后才写入WAVE文件中。
typedef struct WAVE_HEADER{
char fccID[4];
unsigned long dwSize;
char fccType[4];
}WAVE_HEADER;
typedef struct WAVE_FMT{
char fccID[4];
unsigned long dwSize;
unsigned short wFormatTag;
unsigned short wChannels;
unsigned long dwSamplesPerSec;
unsigned long dwAvgBytesPerSec;
unsigned short wBlockAlign;
unsigned short uiBitsPerSample;
}WAVE_FMT;
typedef struct WAVE_DATA{
char fccID[4];
unsigned long dwSize;
}WAVE_DATA;